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1.1 Background

Skin cancer is one of the most common cancers worldwide, with 5.4 million new diagnoses in the US alone
each year [22]. Early detection of skin cancer is critical for timely recovery; in the case of melanoma,
commonly cited as the deadliest form of skin cancer, five-year survival rates can drop from 99% for
early-stage diagnoses down to a mere 5% when diagnosed at the late stage of the disease.

Skin cancers normally manifest as localised lesions on the surface of the skin. As such, diagnosis is
typically performed via visual screening with the naked eye and dermoscopy, followed by histopathological
confirmation of a biopsied skin sample. Such clinical assessment, however, can be both costly and difficult
to access. The task is further complicated by the existence of visual similarities between malignant and
benign skin lesions.

In an attempt to alleviate these challenges, deep convolutional neural networks (CNNs) have been
proposed as an effective diagnostic tool for skin cancer. Specifically, CNNs have the potential to aid
clinical diagnosis via the automated classification of skin lesions taken from both digital photographs and
dermoscopy images. This paper aims to explore the applicability of CNNs in such contexts, demonstrat-
ing that deep neural networks have the capacity to match the skin cancer classification capabilities of
experienced dermatologists.

1.2 Methods

1.2.1 Dataset

This study utilised a dataset of 129,450 images and corresponding dermatologist-verified disease labels.
The dataset comprised 126,076 digital photographs and 3,374 dermoscopy images, with a total 2,032
individual cancerous and non-cancerous skin diseases represented. Images were collected in collaboration
with Stanford University Medical Center as well as from online public repositories [2]. 98% of the dataset
was used to train and validate the neural network, while the remaining 2% was held out for subsequent
testing. Note that only the test image disease labels were biopsy-verified.

1.2.2 Disease Partitioning Algorithm

To enhance the network training process, this paper proposes a novel recursive tree-based algorithm
that merges individual diseases based on clinical and visual similarity. By employing this taxonomical
algorithm, the original 2,032 individual diseases were grouped into 757 disease classes, a subset of which
is shown in Fig. 1.
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Figure 1: Subset of the top of the algorithm-generated skin disease taxonomy. Green nodes are benign
diseases, red nodes are malignant, and orange nodes can be either benign or malignant. The first two
levels are used in validation testing. [9]

1.2.3 Training

The network utilised a pre-trained GoogLeNet Inception v3 CNN architecture [26] (for discussion on the
progress of Inception v3 since the publication of this paper, see Section 2.4). Training was conducted via
transfer learning, whereby the final classification layer of the pre-trained network was removed and re-
trained using the partitioned disease labels. Importantly, these training images were resized to 299 x 299
pixels in order to leverage the natural features learned by the pre-trained network. Model hyperparameters
were optimised via standard backpropagation.

1.2.4 Validation

Nine-fold cross-validation was employed on the model using the partitioned skin disease classes. Specif-
ically, the ability of the CNN to correctly classify images based on the three first-level disease classes in
Fig. 1 was compared to that of two dermatologists. The same experiment was repeated using the nine
second-level disease classes in Fig. 1.

1.2.5 Testing

Testing was performed in the form of three medically important use cases: 1) malignant versus benign car-
cinoma photographs (representing the most common skin cancer), 2) malignant versus benign melanoma
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photographs (representing the deadliest skin cancer), and 3) malignant versus benign melanoma der-
moscopy images. For each experiment, CNN classification performance was compared to the individual
and average performance of 21-25 dermatologists via metrics of sensitivity (true malignancy rate) and
specificity (true benignity rate). In the case of the CNN, these metrics were computed by choosing a
threshold value t for each malignancy probability P and defining the prediction ŷ as ŷ = P ≥ t.

1.3 Results

1.3.1 Skin Disease Classification Performance

Validation results indicated superior skin disease classification performance of the CNN compared to that
of the two dermatologists for both three-way and nine-way disease partitions, as shown in Table 1.

Table 1: Validation testing results for three-way and nine-way disease classification. CNN = network
directly trained on the three and nine classes. CNN - PA = network trained via partitioning algorithm.
CNN accuracies shown as mean ± standard deviation. [9]

1.3.2 Skin Cancer Classification Performance

For all three test cases, the CNN outperforms the average dermatologist at skin cancer classification using
a subset of the testing set, as shown by the specificity-sensitivity curves in Fig. 2. Notably, similar results
were achieved when the CNN was re-tested using the entirety of the testing set.

2 Discussion and Critique

2.1 Paper Analysis

This study compared the performance of a CNN trained on partitioned disease classes versus that of
a group of experienced dermatologists in both classification of skin diseases and differentiation between
malignant and benign skin cancers from digital images.

Results from validation testing demonstrate that the CNN was able to learn relevant information
during network training, as shown by its higher skin disease classification accuracy compared to the two
dermatologists. Specifically, the CNN achieved an accuracy of 72.1±0.9% with the partitioning algorithm
for three-way disease classification compared to 65.6% and 66.0% for the dermatologists. The CNN
also performed slightly better in classifying finer disease partitions (nine-way), achieving an accuracy of
55.4±1.7% compared to 53.3% and 55.0% for the same two dermatologists. These metrics, however, are
inconclusive for verifying absolute classification ability, given that the ground truth disease labels for the
validation images were not biopsy-proven.
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Figure 2: Specificity-sensitivity curves showing CNN skin cancer (malignant versus benign) classification
performance for a range of threshold probabilities. The CNN achieves superior performance to a given
dermatologist if its red point lies below the blue curve. AUC = area under the curve (higher the better).
a, Test case results (CNN versus dermatologists) for carcinoma photographs, melanoma photographs, and
melanoma dermoscopy images using a subset of the testing set. b, Test case results (CNN only) using
the entire testing set. [9]

Analysis of the confusion matrices generated from validation testing (Fig. 3) highlights that both
the CNN and dermatologists tend to misclassify similar skin diseases. Inflammatory conditions were
commonly mistaken for skin lesions, for example, while it was often difficult for both groups to distinguish
between malignant and benign melanocytic lesions. In the latter case, dermatologists tended to err on
the side of malignant classification, suggesting the greater importance of minimising false negative over
false positive classifications in such cases. Finally, malignant and benign dermal tumours were frequently
misclassified, likely due to their often indistinguishable appearance as small nodules underneath the skin
surface.

The CNN was shown to outperform the average dermatologist in all three test cases for this chosen
dataset, demonstrating the CNN’s equal level of competence for the chosen skin cancer classification tasks.
While the CNN was largely able to equal or outperform most individual dermatologists on unseen data,
one dermatologist in each of the melanoma photograph and dermoscopy image cases was able to achieve
superior performance.

Interestingly, there was a slight drop in skin cancer classification performance for dermoscopy images
for both the CNN and dermatologists in comparison to the photographic images, with the CNN achieving

4



Figure 3: Comparison of confusion matrices between the CNN and two dermatologists for the nine-
way skin disease classification during validation testing. For each confusion matrix, element (i, j) is the
probability of predicting class j given a true label of class i. Class 0 = cutaneous lymphoma, class 1 =
benign dermal, class 2 = malignant dermal, class 3 = benign epidermal, class 4 = malignant epidermal,
class 5 = genodermatoses, class 6 = inflammatory, class 7 = benign melanocytic, class 8 = malignant
melanoma. [9]

an AUC of 0.91 for the melanoma dermoscopy images compared to 0.96 and 0.94 for the carcinoma and
melanoma photographs, respectively.. This trend likely reflects the greater visual challenge and higher
classification difficulty of dermoscopy images, rather than being an indication of their diagnostic accuracy.

In summary, this paper was one of the first to demonstrate the effective application of artificial in-
telligence to the classification of both general skin conditions and specific skin cancers, matching or
outperforming dermatologist performances across three critical diagnostic tasks. In terms of clinical im-
plications, the authors concluded that fitting mobile devices with such CNNs could enhance proactive
and early diagnostic care outside of clinical visits, as well as augment clinical decision-making by pro-
viding complementary information to contextual patient factors used in real-world diagnosis. Subsequent
developments in the field are discussed in Section 2.4.

2.2 Paper Strengths

This study showed numerous strengths and demonstrated a strong proof-of-concept for the increased usage
of deep neural networks in dermatological diagnosis to improve automation and reduce costs at a time
when the field was not as developed, reflected in the paper’s high citation count (see Section 2.4 for related
works). For example, the dataset used to train and test the model was two orders of magnitude larger
than previous similar studies [3][11][18][20]. Moreover, the network incorporated lower-quality images
(i.e., perturbed by zoom and blurriness) during training to reflect the expected quality of patient input
images and improve robustness to potential variability in the real world. The use of biopsy-proven ground
truth labels during testing further provided an empirical baseline for subsequent comparison.

The approach of using transfer learning via the Inception v3 network was beneficial in this context
owing to the lack of large real-world dermatological datasets for model training at the time of publication.
In this way, the model can efficiently combine the basic learned features from the pre-trained model with
the domain-specific skin lesion features from the retrained layers.

Notably, the paper’s usage of its taxonomical algorithm was beneficial in generating both medically
relevant and deep learning-suitable training classes. Specifically, the algorithm was able to find a harmony
between having too many fine-grained classes that lack sufficient data to be learned properly, as well as
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too few coarse classes that are too data-abundant and likely to introduce bias. Furthermore, the algorithm
outputs a probability metric for each class during inference, allowing for the model uncertainty over a
given prediction to be expressed and utilised during clinical practice.

2.3 Paper Limitations

The most apparent limitation of the paper was likely the lack of real-world generalisability of the CNN-
based model. The study did not report its dataset’s distribution of population demographics, which may
have an impact on the appearance of skin cancer and hence impact the model’s classification ability. A high
imbalance was also present between the number of photographic and dermoscopic images in favour of the
former, meaning that the algorithm had much fewer dermoscopy features to learn from. Furthermore, the
authors state that, due to the difficulty of obtaining such images, the full spectrum of lesions encountered
in typical clinical practice was not covered within the dataset.

To enhance clinical applicability of the model described, further test cases outside of the three reported
with a significantly greater number of dermatologists are required to determine whether the classification
algorithm is scalable to other lesion types and skin diseases, as well as the inclusion of additional contextual
factors as model features to better replicate real-world clinical practice. Both these points reinforce the
importance of data-driven diagnostic approaches. Moreover, a detailed discussion of the computational
complexity and inference times was lacking, which would have better supported the authors’ claim of the
algorithm’s compatibility with mobile devices.

In addition to generalisability, model accuracy was potentially compromised due to the possibility of
images being incorrectly labelled by dermatologists and causing error propagation during the training
process. Outside of dataset limitations, the interpretability of the algorithm and subsequent results is
lowered by the black box nature of the CNN employed, limiting the model’s usage outside of academic
research settings. This is further compounded by the lack of source code published by the authors to
verify their experimental results. In terms of the metrics used, further detail on the false positive and false
negative rates of the CNN predictions would have been beneficial for evaluating the model’s reliability
and accuracy. Additionally, the skin cancer classification task was a binary one that only considered
malignancy and not the stage of the disease, and thus earlier diagnosis could not be measured as a clinical
outcome of the study.

The use of 9-fold cross-validation was an interesting methodological choice that was unfortunately not
justified by the authors. In general, k-fold cross-validation with k = 10 is more commonly utilised and
has been cited to provide sufficient variance in the training data to enable learning while also balancing
computational cost in most cases [12]. Leave-one-out cross-validation is also a common option when
robust estimates of model performance are more important than computational efficiency. Lower values
of k may increase the bias of performance estimates, hence some form of quantitative comparison would
have been useful in helping to rationalise the experimental design.

2.4 Subsequent Works

Since the publication of this seminal paper in 2017, the field of deep learning-based skin cancer classifica-
tion from digital images has seen tremendous advancements. Prior to this paper’s publication, CNNs had
already shown exceptional performance in computer vision tasks outside of the dermatological domain,
and their continued prevalence for skin cancer classification in the proceeding years is described in a num-
ber of recent reviews [7][21]. Naqvi et al. [21] report the following, in chronological order of development,
as the most commonly used CNN architectures in skin cancer analysis: AlexNet (2012) [19], VGG (2014)
[24], Inception v3 (2015) [26], ResNet (2015) [13], DenseNet (2017) [16], and MobileNet (2017) [15].

It is interesting to note that Inception v3 remains more commonly used for skin cancer analysis than
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its subsequent iterations Inception v4 and Inception-ResNet, despite Szegedy et al. [25] reporting a
superior performance of 3.08% top-5 error on the test set of the ImageNet classification challenge using
an ensemble of three residual and one Inception v4. One example of such usage is the work of Emara et al.
[8], who utilised a single Inception v4 model in which long residual connections allowed the concatenation
of features extracted from earlier layers with high-level layers to improve classification performance. The
authors achieved an accuracy of 94.7% using the International Skin Imaging Collaboration (ISIC) 2018
Challenge dataset [4][27].

More recently, the idea of deep learning-based ensemble methods has been gaining traction for clas-
sifying skin cancers. Kausar et al. [17] proposed an ensemble of five network architectures, namely
ResNet, Inception v3, DenseNet, Inception-ResNet v2, and VGG-19. Using majority voting and weighted
majority methods, the authors achieved accuracies of 98% and 98.6%, respectively, on the ISIC Archive
dataset (https://www.isic-archive.com, accessed on 1 February 2024), which were higher than that
of any individually trained model. Deep ensembles have also played a role in model selection for skin
cancer diagnosis via uncertainty quantification. For example, Abdar et al. [1] integrated deep ensembles
and ensemble Monte Carlo dropout methods in their classification models (ResNet152 v2, MobileNet v2,
DenseNet201, and Inception-ResNet v2), achieving an accuracy of 88.95% on a subset of the ISIC Archive
dataset.

Outside of advancements in the algorithms employed, the number of publicly available skin cancer
image datasets has also seen substantial development since 2017. For example, in addition to the ISIC
Archive mentioned above, annual ISIC challenges between 2017 and 2020 [4][5][6][23][27] have prompted
the curation of datasets containing a total of 72,957 images and corresponding ground truths. Dataset
sizes remain a limiting factor in clinical deep learning applications, however, when compared to the orders
of magnitude present in non-medical imaging datasets, while images containing a greater representation
of skin colours also remain insufficient for addressing skin colour bias.

While Esteva et al. [9] have since largely expanded their scope of research to other clinical applications
of deep learning, a perspective article published by Esteva and Topol in 2019 [10] discussed the barriers
towards clinical translation of deep learning systems for skin cancer diagnosis from a more practical
perspective, in which the topic of humans and artificial intelligence working alongside one another was
raised. This issue was further discussed by Hekler et al. [14], who found that combining human and
artificial intelligence for the classification of skin cancer images yielded superior results (accuracy of
82.95%) compared to that achieved by artificial and human intelligence alone (accuracies of 81.59% and
42.94%, respectively), supporting the recent increase in acceptance and adoption of artificial intelligence
into real-world clinical practice.

3 Peer Feedback and Reflection

3.1 Tutorial Discussion

Following presentation of the paper, a number of discussion and feedback points were raised by colleagues.
For example, it was noted that the model made use of an architecture that had been pre-trained on a
variety of non-domain-specific images, instead of using only skin disease images relevant to the task. While
the practical benefits of using such a pre-trained network remain apparent, a discussion on the extent to
which domain-specific networks have been utilised in the ensuing years since this paper’s publication was
not included in the presentation, hence its subsequent inclusion in Section 2.4 of this report.

One common point of confusion among colleagues was the motivation and usage of the taxonomical
algorithm to generate partitioned disease classes. The specific method used to group certain diseases
together was not explicitly detailed in the paper, yet the algorithm was presented as one of the main
unique contributions of the study, which may have prevented its utility from being fully understood and
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verified.

3.2 Personal Reflection

Overall, the synthesis of information detailed in this paper and analysis of the main findings presented a
difficult but highly enjoyable task. I chose to present on the topic of deep neural networks applied to the
task of image analysis in dermatology due to its direct relevance to my current research project. With
this paper being one of the earliest works in the field, I was able to better appreciate the context from
which subsequent algorithmic and dataset developments have evolved. I believe my critical analysis skills
have improved as a result, which will be of great benefit for the remainder of my PhD.

The main challenge I found when compiling the presentation was determining how much background
theory, in terms of both medicine and artificial intelligence, should be included, as well as choosing which
results would be most relevant to the main message of the paper. To improve for next time, I will aim
to keep my findings more concise and ensure that I present the results in an appropriate and logical
sequence. Furthermore, given that I was unable to answer some of the more technical questions about the
methodology, for example, regarding the disease partitioning algorithm, I will aim to spend more time
understanding the specific methods employed, which may include reading the supplementary material in
more detail or further references suggested by the authors. I will also take note of when the paper was
published and give context on the work that has been done in the field since the paper’s publication to
include in the presentation, something which was subsequently added in the writing of this report.
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