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2 Background

Antibiotic agents are the cornerstone of modern medicine. Their discovery and employment
has revolutionised the management of infectious diseases, significantly improved quality of life
and prolonged life expectancy. However, the inappropriate use of antimicrobial agents has been
an important driver of antimicrobial resistance, the process by which bacteria mutate to be-
come resistant to antibiotic agents. In order to keep up with the increasing number of resistant
bacteria there are increased efforts to discover new antibiotic agents. However, the process of
antibiotic discovery is very long, costly and has mostly failed thus far.

In the paper “A deep learning approach to antibiotic discovery”, the authors employ a
pioneering method of using deep learning (DL) to identify novel antibiotic compounds by pre-
dicting antibacterial properties based on chemical structures. The aim is to optimise the process
of antibiotic discovery by reducing the time and cost of discovery using DL methods. The aim
of the study is to develop a DL model that would be applied during early drug discovery to
score compounds based on the likelihood of exhibiting antimicrobial properties. These predic-
tions would be made in silico based on the chemical structure of the drug molecules, which
would then be tested in vitro and in vivo to confirm efficacy. The paper was published in the
high-impact journal Cell in February 2020 and has led to the discovery of a novel antibiotic,
Halicin.

3 Paper Content

3.1 Context and Motivation

Antimicrobial resistance (AMR) is the process by which bacteria develop or acquire mechanisms
of resistance to antimicrobial agents. AMR is now a major global health emergency projected
to be responsible for 10 million deaths a year by 2050 [4]. The main driver of resistance is the
use of antibiotics to treat human infections, whether that use is appropriate or inappropriate.
Once a bacterial strain develops resistance to an antibiotic agent, the compound essentially be-
comes obsolete for the treatment of infections caused by that pathogen. Currently, the rate at
which antibiotic resistance develops surpasses that of antibiotic discovery, which brings about
the daunting prospect of eventually running out of therapeutically effective antibiotics.

The impact of AMR and the antibiotic crisis is many fold. Firstly, we will no longer be able
to treat common infections, increasing risk of mortality and morbidity. These infections caused
by resistant strains will be more likely to spread, posing major risks for population health. Fi-
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nally, the development of AMR has strong socioeconomic implications due to an increased cost
of care, in-hospital length of stay, and an increase in the workload of healthcare professionals.

The most productive era of antibiotic discovery was from 1940s to mid 1960s [8](Figure 1.)
and was known as the golden era of antibiotic discovery. These classes of antibiotics were dis-
covered through screening of natural products, particularly secondary metabolites synthesised
by soil-dwelling microbes. However, by the mid 1960s our ability to discover novel antibiotics
using this method was significantly diminished as it relied on the diversity of naturally avail-
able compounds which had already been exhausted. Therefore, antibiotic discovery approaches
turned to high throughput screening of semi-synthetic derivatives, a process by which the scaf-
fold of a natural compound is modified to increase efficacy and potency, and decrease toxicity.
However, the chemical space, or the vast theoretical set of all possible chemical compounds that
could be screened for therapeutic activity is so enormous, making it difficult to predict which
modifications will work. This often leads to more failures than successes when engineering
next-generation versions of existing natural antibiotics. Finally, discovering entirely synthetic
antibiotics involves screening very large chemical libraries to find compounds that limit bacte-
rial growth. This is a trial-and-error process using high-throughput screening (HTS) techniques
where thousands to millions of chemical compounds are screened for antibacterial properties
through an automated method. HTS is very expensive and slow, and chemical libraries need to
be specifically curated. Unfortunately, since the implementation of HTS in the 1980s, no new
clinical antibiotics have been discovered using this method.

Overall, the process of antibiotic discovery is slow, expensive, and inefficient. The most
common problem encountered in antibiotic discovery is that of dereplication, where the same
molecules or structurally similar molecules are being repeatedly discovered rather than molecules
with truly novel molecular structures. There is therefore an urgent need to develop novel ap-
proaches that increase the rate of drug discovery and decrease the cost.

Figure 1: Antibiotic discovery timeline. Time-line of the discovery of antibiotic classes
that are in clinical use. The discovery void is the period starting 1987 marked by the discovery
of the last antibiotic class that was successfully approved for therapeutic use.[8]

3.2 Deep Learning Methodology

This paper explores the application of a DL model, Chemprop, to overcome the current limita-
tions in the antibiotic discovery pipeline. The aim would be to shift early drug discovery from
HTS to computational simulations. Performing early drug discovery stages in silico would allow
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the exploration of vast chemical spaces that are beyond the reach of experimental approaches.

In order to find algorithmic solutions for molecular property prediction, molecules need to
be represented as vectors. In chemoinformatics, molecules were represented using fingerprints
and descriptors. Fingerprint representations are usually binary vectors used to log the presence
or absence of molecular substructures at a given location in the molecule. On the other hand,
descriptors are vectors that contain molecular properties thought to be relevant to the task of
interest.

Fingerprint and descriptors rely on expert knowledge and need to be designed manually.
This approach is time-consuming, and it is very difficult to predict which molecular properties
actually hold predictive value. As a result, these models did not achieve enough accuracy to
replace traditional drug discovery methods.

The innovative approach applied in this article consists in not only automatically learn-
ing the mapping of the vectorised molecular representation to the target property using AI
approaches, but also learning the vectorised representations of the molecules itself (Figure 2.)
This shift from the deterministic approach to molecular representations to learned molecu-
lar representations holds the potential to gain in prediction accuracy. The authors employed
message-passing graph neural network (MP-GNN) techniques to derive the learned molecular
representations from their string representations, a method discussed in future sections.

Figure 2: Deterministic vs. Learned molecular representations for property prediction [10]

3.2.1 Message-Passing Graph Neural Networks

Graph neural networks (GNNs) are a very useful way of representing data that is associated
with an underlying structure, such as molecules and chemical structures. GNNs consist of nodes
and edges. In molecular graphs, the nodes correspond to the atoms whilst the edges represent
the bonds formed between the atoms of a molecule. Each node is associated with an initial
feature vector containing atom and bond features, derived using the RDKit Python library [5].
In order for the GNNs to learn from the data, feature attributes and connectivity information
of a graph is represented using feature matrices. In brief, node feature matrices contain the
features for all the nodes in the graph, whilst an adjacency matrix keeps track of which nodes
are connected in the graph to define how the GNN will aggregate information from surrounding
neighbours.

Once the feature and adjacency matrices are initialised, a series of message-passing or graph
convolution steps occurs, during which information is passed between atoms (nodes) through
their bonds (edges) allowing the model to learn molecular structures directly. Each node col-
lects information from its directly connected neighbours by summing, averaging or applying a
weighted function to combine neighbour features. At each message-passing step, which repre-
sents a layer of the GNN, each node collects information from further nodes to create a learned
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molecular embedding. At the end of the convolution operations, the MP-GNN vectorised rep-
resentations of local chemical regions are summed into a single continuous vector to capture
the complexity of an entire molecule thereby providing a wholistic representation.

3.2.2 Chemprop model architecture

The Chemprop DL framework to predict molecular properties consists of two sub-parts. The
MP-GNN encoder learns task-specific molecular representations from the molecular graph.
Molecular representation are then fed into a feed forward neural network (FFNN) decoder
that predicts the target chemical property by learning the mapping from molecular represen-
tation to antibiotic activity (Figure 3.). The use of MP-GNN in the Chemprop architecture
provides several benefits. By learning molecular features automatically, handcrafted descriptors
and fingerprints are no longer needed. Additionally, model generalisation is improved as the
model now captures complex molecular relationships.

Furthermore, there are several reasons why MP-GNNs are a well-suited architectural choice
for molecular property prediction tasks. First, GNNs inherently capture the underlying struc-
tural information in molecules by representing atoms as nodes, and atomic bonds as the edges
connecting nodes. In addition, the message-passing mechanism is very effective in modeling
the atomic interactions within the molecule. Message passing allows the model to capture both
local chemistry as well as global information with regards to the structure, geometry, and bond
types present within the molecule. These molecular features are crucial for determining chemi-
cal properties and biological activity. Finally, MP-GNNs are interpretable and scalable to large
molecules, making them powerful tools for molecular property prediction and drug discovery.

Figure 3: Deep learning framework of the Chemprop model [3]

3.2.3 Experimental approach

The researchers adopted a 3-stage approach for tackling the antibiotic discovery problem.
Firstly, they trained the Chemprop model to predict growth inhibition of E.Coli using a training
set of 2,335 known molecules. These molecules were curated from a library of FDA-approved
drugs as well as purified natural products. The graph structure of every molecule was tied to
an activity score (0/1) denoting whether the compound exhibited antibiotic properties, which
was determined empirically in the lab (Figure 4). The trained model was then applied to the
ZINC15 drug repurposing library which contains over 107 million molecules to identify lead
compounds [2]. The compounds were ranked based on the model’s predicted score. Lastly, lead
compounds were selected for empirical testing in vitro and in vivo.
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Figure 4: E.Coli growth assay of 2,335 compounds FDA-approved molecules and natural prod-
ucts used to derive the Chemprop training set

3.3 Empirical Validation

3.3.1 Empirical validation of model predictions

The 99 molecules assigned the highest prediction scores by the Chemprop algorithm were
selected and tested empirically in the lab to determine whether they indeed displayed growth
inhibitory activity against E.Coli. Bacterial growth inhibition assays revealed that 51 out of
the 99 tested compounds exhibited antibiotic properties (Figure 5). This is a necessary yet
not sufficient molecular feature for candidate antibiotics. As previously discussed, the ideal
molecular candidate would also need to be structurally different to conventional antibiotics in
order to overcome the challenge of dereplication. The molecular candidate that fulfilled both
criteria and was selected for further empirical analysis was Halicin.

Figure 5: Screening of the 99 candidate compounds with the highest predicted algorithmic
score for E.Coli growth inhibition. True Postive Rate (TPR), Optical Density(OD)
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3.3.2 Halicin Is a Broad-Spectrum Bactericidal Antibiotic

Dose response curves for growth inhibition of E.Coli revealed that Halicin was a potent an-
tibiotic, and that it not only had bacteriostatic properties in E.Coli cultures but it was in
fact bactericidal. The authors then set to verify whether Halicin would retain activity against
drug-resistant pathogens. They incubated clinical isolates of carbapenem-resistant Enterobacte-
riaceae (CRE), A. baumannii, and Pseudomonas aeruginosa with Halicin. These are clinically
problematic pathogens labeled as needing urgent antibiotic treatment by the World Health Or-
ganization. Halicin showed strong inhibitory activity against both Enterobacteriaceae and A.
baumannii, making Halicin a broad-spectrum agent that retains activity in multiple bacterial
strains.

3.3.3 Halicin Dissipates the pH Component of the Proton Motive Force

Next, the authors conducted a set of experiments aimed at elucidating the mechanims of action
(MOA) underlying Halicin’s antiboitc activity. For this, they deliberately attempted to induce
resistance in E.Coli bacterial strains by treating cells with sub-therapeutic concentrations of
Halicin for a prolonged period of time in order to study the differences in gene expression in
resistant and non-resistant bacteria. However, during a 30-day experiment in liquid culture
the team were unable to evolve resistance to Halicin, whilst they were readily able to develop
resistance using a conventional antibiotic, ciprofloxacin.
The researchers therefore turned to RNA-sequencing methods to look at the gene expression
difference in E.Coli cells before and after Halicin treatment. They observed a downregulation
in genes involved in locomotion, flagellar biosynthesis and membrane protein complexes, which
is often associated with the dissipation of the pH component of the proton motive force, the
electrochemical gradient across the extracellular membrane of E.Coli, which cells must maintain
for viability.

3.3.4 Halicin Displays Efficacy in Murine Models of Infection

Given that Halicin displayed broad-spectrum bactericidal activity and was not susceptible to
developing resistance, the authors next asked whether the compound might have utility as
an antibiotic in vivo. For this, they tested Halicin in two murine models of infection, an A
Baumanni model of skin infection, and a C. difficile model of gut infection. Halicin was topically
administered to the skin infection model which resolved after 24h of treatment. Similarly,
systemic Halicin administration was able to eradicate the A.Baumannii infection within 3-4
days of treatment (Figure 6). These results therefore demonstrated the in vivo efficacy of the
drug molecule.

4 Strength, Weaknesses and Future Perspectives

4.1 Strengths

The paper clearly demonstrates the potential of AI in drug discovery and provides the first
compelling study showing that DL can be used to identify structurally new antibiotics thereby
accelerating the drug discovery pipieline. By relying on the Chemprop model’s predictions to
find initial compound leads that are then empirically validated using biomedical methodologies,
the authors highlight the potential of multi-disciplinary strategies to solving complex medical
problems.
A further strength of this study resides in the methodical, step-wise approach to conducting
research through the formulation of sequential hypotheses driven by experimental findings.
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Figure 6: A. Wound infection murine model Mice were infected with A. baumannii and
treated with either vehicle (green) or halicin (blue) B. Gut infection murine model Mice
were infected with C. difficile and treated with Metronidazole (red), vehicle (green) and halicin
(blue)

Finally, the research presented in this paper led to the discovery of a structurally and function-
ally novel antibiotic, Halicin, the first antibiotic to be discovered through the application of AI
methods.

4.2 Weaknesses

Despite indisputable strengths, it is worth addressing some of the limitation of the discussed
study. Firstly, the Chemprop model was trained on a relatively small dataset of only 2,335
molecules which is unlikely to be sufficient in encompassing the full chemical diversity of po-
tential antibiotics. These data limitations may restrict model generalisation to entirely new
chemical spaces. Further limitations are related to the lack of explainability in model outputs.
The model identifies compounds that are likely to have growth inhibitory properties against
E.Coli, however, Chemprop does not provide any insights into the potential mechanism of ac-
tion of candidate molecules. This means that more extensive follow-up experiments are required
to elucidate molecular mechanisms.

Non-inclusion of pharmacokinetic and toxicity profiles of molecular compounds during the
training phase poses additional challenges. Indeed, training examples were derived from in vitro
experiments on bacterial cultures and do which does not directly translate to clinical efficacy in
vivo. While Halicin was shown to be effective in mouse models, broader in vivo studies were not
conducted. This raises questions about safety, pharmacokinetics, and efficacy in more complex
systems or against a broader range of infections. For example, some compounds may exhibit
bactericidal properties but have limited bioavailability, or high toxicity, therefore limiting their
utility for clinical applications. Pharmacokinetic profiling and safety studies remain a bottleneck
in pharmacological research, further delaying antibiotic discovery. To address these challenges,
incorporating pharmacokinetic and toxicity information along with developing explainability
methods would further allow the Chemprop model to increase the rate of antibiotic discovery.

4.3 Future perspectives

This paper is a milestone in the integration of AI into drug discovery. The authors published a
follow-up study in 2023 in which the Chemprop model was used on a different bacterial strain,
A.Baumannii. This study led to the discovery of Abaucin, a narrow-spectrum antibiotic, and
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showed the continued utility of Chemprop in identifying potent antibacterial agents [6].

In addition, the research team published a paper exploring the integration of explainable AI
(XAI) methodology to address some of the limitation of the initial study. They hypothesised
that model predictions could be explained on the level of chemical substructures. They used
tree searching to determine which part of the molecule had the highest positive predictive value
and therefore was likely to be responsible for the therapeutic activity of the compound. This
improves transparency of model predictions and allows for more efficient exploration of chemical
spaces based on the newly identified subgroups. [9]
Of note, in 2024, a few years following the above-mentioned publications, the U.S. Department
of Health and Human Services announced funding for projects leveraging AI to accelerate
antibiotic discovery [1], reflecting a growing recognition of AI’s role in addressing antimicrobial
resistance.
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