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1 Paper Summary

The paper ”Hierarchical Text-Conditional Image Generation with CLIP Latents”, published
as an arXiv pre-print in 2022 [1], proposes a novel architecture for text-to-image generation.
Although it has had a high impact, with over 6700 citations to date, it remains as a preprint.
The authors, Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen,
were researchers at OpenAI at the time of publishing. Their proposed architecture (unCLIP)
succeeds at generating photorealistic and semantically rich images from text. By using CLIP
image and text embeddings [2], unCLIP is a two-stage hierarchical model that consists of a
prior and a decoder that allow for text-based image manipulation. In comparison to precedent
models, unCLIP is able to generate diverse images that retain style and semantic meaning,
exhibiting less of a fidelity-diversity trade-off. This research tutorial report focuses on the
paper in the context of its relevance to AI for healthcare.

1.1 Background: AI architectures

Using Constrastive Language-Image Pre-Training (CLIP) [2], which learns a joint represen-
tation space for text and images, this paper proposes a two-stage architecture: a prior that
produces CLIP image embeddings conditioned on a text caption, followed by a decoder that
generates the output image conditioned on the CLIP image embedding produced by the prior.
Before detailing the specific architectures that constitute the unCLIP model, there are two key
architecture types to first understand: CLIP and stable diffusion models.

1.1.1 CLIP

The paper builds on a precedent model, CLIP [2], which enabled the translation between
image and text modalities. CLIP connects text and images through a joint representation
space, such that (image, text) pairs are mapped to similar locations. It is trained using a
contrastive learning approach that takes batches of (image, text) pairs and maximises the
similarity between the embeddings of the correct pairs and minimising that of the incorrect
pairs. In this way, visual concepts are associated with their textual counterparts. unCLIP
uses the pre-trained CLIP model, which can perform well on unseen tasks without requiring
task-specific training (zero-shot prediction, as indicated in Fig. 1.)

Figure 1: Summary of CLIP, which jointly trains an image and a text encoder that can then
be used to predict the textual class of an image. [2]
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1.1.2 Stable diffusion models

Diffusion models, exemplified in Fig. 2, are a class of generative models. By learning to predict
the original data from the noised versions, a diffusion model generates samples that resemble
the data it was trained on. Stable diffusion models are a specific subtype that operate in a
lower-dimensional latent space instead of in the original data space. This increases efficiency as
well as computational cost and memory requirements. After diffusion, the processed latent rep
is then decoded back into the original data space. In the case of unCLIP, the stable diffusion
models used gradually add Gaussian noise to the original data over multiple time-steps, from
which the model needs to predict the original unnoised data. During inference, the model
starts with a randomly sampled noise vector, resulting in high-quality and diverse samples can
be created.

Figure 2: Example of stable diffusion model architecture, with a UNet used for denoising. An
image is encoded and noise is added T times in the forward diffusion process. In the reverse
process, the noised input is iteratively denoised, using conditioning information. [3]

1.2 Method: unCLIP

Using an initial frozen CLIP representation space, unCLIP consists of two stages: the prior and
the decoder. Each uses distinct architectures, each component of which will be subsequently
described. The overarching hierarchical prior-decoder structure is based on equation 1, where
x is the image, y is the caption, and zi is the CLIP image embedding.

P (x|y) = P (x, zi|y) = P (x|zi, y)P (zi|y) (1)

So, to sample from P (x|y), it is possible to first sample zi using the prior P (x|zi) and then
sample x using the decoder P (x|zi, y).
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Figure 3: The unCLIP model. Above the dotted line, the CLIP training process is shows.
Below the line, the two stage text-to-image generation process is shown [1].

The prior produces CLIP image embeddings conditioned on captions and the CLIP text em-
bedding (which is merely a deterministic function of the caption). The paper introduces two
alternatives for a prior: a stable diffusion model and an autoregressive model. For both of
these priors, during training the conditioning information was dropped 10% of the time to im-
prove robustness. The image embedding produced by the prior is then used by the decoder to
generate the final image that corresponds to the initial caption.

1.2.1 Diffusion prior

Fig. 2 shows a general diffusion model framework. In the case of the prior, the image is the
CLIP image embedding, with a Gaussian forward diffusion process. Instead of the UNet, the
prior uses a decoder-only transformer with masked self-attention to ensure the model can only
attend to elements that precede the current position in the input sequence. This means the
value for each dimension of the unnoised CLIP image embedding is predicted sequentially,
conditioning each prediction on the previously generated dimensions and the input sequence
(consisting of the encoded caption, the CLIP text embedding, a timestep embedding and the
noised CLIP image embedding). Although the paper does not specify the reason for sequential
dimension prediction, it may be that it allows for a more controlled and systematic generation
process during inference.

The diffusion model is trained to directly predict the unnoised image embedding, using a mean
squared error loss. To improve quality during sampling, two samples of the image embedding is
generated and the one with the higher dot product with the text embedding is chosen. A higher
dot product indicates a stronger alignment between the two (as they are in a joint representation
space), suggesting that the caption more accurately describes the generated image.

1.2.2 Autoregression prior

Principle Component Analysis (PCA) is used to reduce dimensionality with minimal informa-
tion loss, from 1024 to 319 dimensions. These principle components, ordered by decreasing
eigenvalue magnitude, are quantised into 1024 discrete levels i.e. each continuous value within
the 319 dimensions is mapped to one of the 1024 discrete levels. A transformer with masked
self-attention then predicts this resulting sequence of discrete codes autoregressively. Although
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the choice for discretising the values is not discussed explicitly, it may be because continuous
sequence modeling is more challenging and hence harder to train. This is unlike the diffusion
prior where the slow addition of noise lends itself to a continuous modeling approach.

In contrast to the diffusion prior, the autoregressive prior also conditions on the quantised dot
product between the text and image embedding by prepending a token representing this dot
product to the input sequence. This explicitly encodes the desired level of image-caption align-
ment, encouraging the generation of CLIP image embeddings that are semantically consistent
with the inputted caption.

1.2.3 Decoder

The decoder generates an image conditioned on the CLIP image embeddings, by modifying the
3.5 billion parameter GLIDE diffusion model [4] to incorporate CLIP image embeddings with
optional conditioning on the text captioning. To increase the resolution, the resulting image is
up-sampled twice (from 64x64 to 256x256, then 256x256 to 1024x1024) using ADMNet [5], a
diffusion model designed for up-sampling tasks. The up-sampling is made more robust through
corrupting the conditioning images during training.

To improve sample quality, classifier-free guidance, where CLIP image embeddings and the
caption are dropped with a certain probability so that the model learns to generate images
from less informative conditioning signals.

1.3 Results

The paper demonstrates the performance of unCLIP in a range of different ways, such as the
importance of the prior in terms of diversity, photorealism and caption similarity, using both
human evaluation and the Fréchet inception distance (FID). FID is a measure of diversity that
compares the distribution of generated images with the distribution of a set of real images. It
does not always match human judgment, motivating the use of human evaluation alongside it.
They investigate the aesthetic quality and, in line with standard practices, evaluate FID on the
MS-COCO validation set which it was not directly trained on. Compared to other zero-shot
models like GLIDE, unCLIP achieves a new state-of-the-art FID of 10.39 when sampling with
the diffusion prior. They find that the diffusion prior generally performs better, being both
more computationally efficient and producing higher-quality samples.

1.3.1 Fidelity and Diversity trade-off

It is interesting to focus on a particular result, namely that unCLIP avoids the diversity-fidelity
trade-off compared to GLIDE. GLIDE directly uses a caption to guide the diffusion process
using a text encoder, which makes it very sensitive to the guidance scale (a parameter that
controls how strongly the model adheres to the caption). Fidelity therefore tends to come at
the cost of diversity because the guidance scale directly controls the whole generation process,
including the semantic interpretation of the caption. In contrast, in unCLIP the guidance
scale predominantly affects the decoder’s refinement of details within the abstracted semantic
framework the CLIP image embedding defines. This means that, even at higher guidance levels
(higher fidelity), higher diversity can be achieved. In the context of healthcare, retaining fidelity
is crucial. If diversity of the data comes at the cost of accuracy then there would be a negative
downstream effect on the models trained on the synthetic data.
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1.3.2 Image manipulation

unCLIP has functionality that is not merely limited to text-to-image generation. It allows for
the creation of variations of an input image (whilst preserving style and semantic meaning) by
first encoding it with CLIP and then decoding with a diffusion model (of variable stochasticity).

Fig. 4 demonstrates how this also allows for the seamless blending of two images. Similarly,
given that CLIP embeds images and texts to the same latent space, language-guided image
manipulation is possible through interpolating CLIP text and image embeddings. This increases
the control of the diversity of the space that is traversed, which is salient to data augmentation.

Figure 4: Variations between two images generated by interpolating their CLIP image embed-
dings. [1]

2 Critique and Discussion

2.1 Relevance to healthcare

Generative modeling is valuable in the context of data augmentation, including for healthcare
applications [6] gathering high-quality and high-quantity training data that effectively covers
the space is a significant challenge. AI advances that contribute to the potential for synthetic
generation of novel medical imaging therefore have valuable practical applications to healthcare.
Other valuable functionalities enabled includes the possibility to enhance low-resolution images
and translate between different modalities, such as through image-to-image translation [7].
unCLIP is one such advance in AI generative modeling, allowing the generation of photorealistic
and diverse images from text, as well as producing diverse but faithful variations of an image
by retaining semantics and style. However, this method was not developed with healthcare
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in mind and so the risks associated with it need to be considered carefully in the context of
healthcare applications.

2.2 Risks specific to healthcare

Although unCLIP offers exciting opportunities for text-informed image augmentation for health-
care, there are also significant limitations. In the context of possible healthcare applications,
these limitations are significant enough to prevent the use of unCLIP as it is presented in the
paper.

One such limitation is that unCLIP is poor at binding attributes to each other, performing
worse than GLIDE at this. In medical imaging, this could mean that it fails to correctly
bind attributes like size, shape and location of a tumour to each other, rendering it unusable
for informing diagnosis or treatment. This plays a role in unCLIP struggling to produce co-
herent text, which would affect annotations on medical images. Similarly, for complex scenes,
the level of detail is too low. A higher base resolution would be needed, which increases the cost.

Another key limitation is the lack of information about how unCLIP learns biases in the training
data. Understanding this is crucial for fairness in healthcare and ensuring no patient group is
underrepresented or discriminated against. It is also less possible to identify the outputs as AI
generated, which would mean they could be mistaken for the real patient data.

2.3 Impact

Even though the paper exists only as a preprint from 2022, it already has over 6600 citations.
These papers range from subject driven generation that binds a unique identifier to a specific
subject [8] to text-to-3D image generation [9] and text-to-video generation [10]. It has therefore
clearly had significant impact within computer vision, for example it is deployed in OpenAI’s
DALL.E2 model. There does not, however, seem to yet be a specific healthcare application use-
case. The risks, mentioned above, will first need to be mitigated and addressed. However, if and
when synthetic medical image data does become widespread in being able to train AI-powered
healthcare systems, it will be off the back of advancements such as unCLIP.
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